
Domino V12 Certificate
Management

Daniel Nashed

HCL Lifetime Ambassador

2 |

Agenda

• Theory

− Introduction / Motivation

− certstore.nsf & CertMgr

− Manual Flows

− Let's encrypt / ACME Support

− New TLS Credential Cache

• Live Demo & Questions

• Troubleshooting Slides

• Q&A

• Bonus: Build your own Lab

3 |

Domino V12 Design Goal

• Simplify Domino certificate management

• No external tools like OpenSSL command-line to create keys and convert certificates needed!

• Replace difficult to handle *.kyr files with standard *.pem format

• Full Let's Encrypt® / ACME CA integration

• Simplified flows for external certificate authorities

• Domain wide secure and automated deployment for “TLS Credentials”

• Automated update of certificates including automatic cache update in internet server tasks

• Support modern standards like ECDSA in addition to RSA

4 |

Technology used for CertMgr

• Native Servertask & DSAPI Filter (C/C++)

• Leverages existing and new Notes security APIs

• Implements Let's Encrypt uses ACME protocol V2 (RFC 8555)

− ACME = Automatic Certificate Management Environment

− Own HCL implementation leveraging standards like

▫ JSON, LibCurl, JWS, Notes crypto including PEM, RSA and ECDSA keys, (OpenSSL) …

• Designed for “automation”

5 |

Domain wide CertStore

Database & CertMgr

Privates Keys, Certificates,Trusted Roots

6 |

New - certstore.nsf

• Domain wide database managed by CertMgr task

• Secure, automated deployment for TLS Credentials and trusted roots

• Private keys are encrypted with CertMgr server

and the server specified in the field “Servers with access:”

− Special designed Vault style encryption with new API

• Easy to use with modern interface

• CertMgr servertask is only supported on W64 and Linux64

− AIX and OS400 can still leverage certstore.nsf and the new TLS Cache

▫ Create replica manually

7 |

Create certstore.nsf on CertMgr Server

• First server in domain starting the “certmgr” servertask is setup as the CertMgr Server

− Checks the Domino directory profile on admin server for an existing CertMgr server

− If no server exists automatically creates the domain wider certstore.nsf database

− Updates the directory profile on admin server to propagate the CertMgr server in the domain

• Starting the certmgr servertask on any additional server in the domain creates a replica

− Each additional server acts like a “CertMgr client” and will just replicate the database every 2 minutes

− Keeping the CertMgr servertask loaded is an optional convenience step

− Any type of replication setup which ensures a short replication cycle can be used as well

8 |

certstore.nsf – TLS Credentials

• TLS Credential = private key + leaf certificate +

chain (intermediates) + trusted root

• Replaces “*.kyr files”

− Stored in PEM format (text with base64 encoded data)

• Can be created via

− Manual flows including import

− ACME protocol (Let's Encrypt & others)

• Specify trusted roots used for client certificate verification

• Used to be hidden in kyr-file and was difficult to manage

9 |

certstore.nsf – Trusted Root

• Stored in trusted, secured certstore.nsf

− Replicated domain wide

• Used for client cert verification

• And auto complete certificate chains

− ACME and manual flows

• Certificate chains are automatically sorted & completed

− Private Key → matching leaf certificate

→ intermediate certs in the right order → trusted root

• Tip: you can import intermediate certificates as

“Trusted Root” to be used to auto complete chains

− Just listed with warning, that they are no root

10 |

New - Support for Elliptic Curves – “ECDSA Keys”

• ECDSA is the more modern, more secure standard with less overhead

− 256 bit (NIST P-256) ECDSA key → 3072 bit RSA key or a 128 bit AES key.

− 384 bit (NIST P-384) ECDSA key → 7680 bit RSA key or a 192 bit AES key.

− 512+ bit ECDSA key (NIST P-521) → 15360 bit RSA key or a 256 bit AES key.

• Fully supported in the Domino V12 TLS/SSL stack

− Support for RSA and ECDSA key types in parallel

• With ECDSA the following ciphers are automatically used instead of the cipher config

− TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xC02B)

− TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (0xC02C)

• Background Information ECDSA

− https://blog.cloudflare.com/ecdsa-the-digital-signature-algorithm-of-a-better-internet/

https://blog.cloudflare.com/ecdsa-the-digital-signature-algorithm-of-a-better-internet/

11 |

Support for two important TLS 1.2 Curves – X25519 & X448

• Strong security with improved performance

− Details: https://en.wikipedia.org/wiki/Curve25519

• The new order of curves

− Curve X25519

− Curve NIST P-256

− Curve X448

− Curve NIST P-384

− Curve NIST P-521

• Notes.ini parameter per curve

− All curves enabled by default

− Current best practice

• If really needed disable individual curves

− SSL_DISABLE_CURVE_X25519=1

− SSL_DISABLE_CURVE_P256=1

− SSL_DISABLE_CURVE_X448=1

− SSL_DISABLE_CURVE_P384=1

− SSL_DISABLE_CURVE_521=1

https://en.wikipedia.org/wiki/Curve25519

12 |

Manual Certificate Operations

• 1. CertMgr processes submitted requests and creates

− Private key (RSA or ECDSA)

▫ Saved locally encrypted for assigned servers

• CSR (Certificate Signing Request) signed by private key→ PEM

• 2. Admin copies CSR to CA

• 3. Admin imports certificate & chain (PEM) back

• Paste full chain in any order and submits the form again

• Duplicate certs are ignored

• Missing intermediate certs and root are automatically

added from “Trusted Roots” in certstore.nsf

13 |

Certificate Health Check & Inspecting Certificate Chains

• All certificate operations check if the certificate is valid

− Status: Valid, Warnings, Errors

− Detailed warning and error messages

• Most common warning:

“Last cert in chain NOT self signed – No root found”

− Not an error - Just means that there is no trusted root

− Trusted roots can be imported separately and are added

to the chain if present

• Updates CertMgr statistics to reflect the current health status

14 |

Certificate Details

• Examine Certificate(s) Dialog

• Copy Certificate chain to check with external tools

− e.g. openssl x509 -in my.pem -text –noout

− Certificate information

15 |

Let's Encrypt / ACME Support

Introduction and HTTP-01 Challenges

16 |

Automated Certificate Management

• Support for Let's Encrypt

− ACME protocol V2 (RFC 8555)

− Automatic Certificate Management Environment

• Free of charge SSL/TLS certificates

• Fully integrated into certstore.nsf & CertMgr

• Easy to deploy

• Automatic certificate update (request) and deployment (reload on server)

17 |

Architecture Diagram

18 |

ACME HTTP-01 Challenges

• How it works

1. ACME server sends a challenge to ACME client

2. ACME server will ask via in-bound HTTP port 80 for the “secret” at a well-known URL

• DSAPI Filter “certmgrdsapi” needs to be enabled in server doc / internet site !!

− Tip: load certmgr -c adds the DSAPI filter to server doc – Internet sites need to specify manually

• If server is configured to only allow authenticated connection configure public URL

− Notes.ini: HTTPPUBLICURLS=/.well-known/acme-challenge/*:/redir.nsf/*:/MFASetup*

• Again: Inbound HTTP port 80 required!

• If the server is not reachable by the ACME server (e.g. Let's Encrypt), the challenge fails !!!

− Tip: Inbound connection can be a proxy connection

19 |

ACME Provider Let‘s Encrypt – included in template

• Let's Encrypt Staging

− https://letsencrypt.org/docs/staging-environment

− Should always be used for first steps testing connectivity

− Provides the same functionality like Let's Encrypt production

− Much higher limits for certificates and errors

• Let's Encrypt production

− https://letsencrypt.org

https://letsencrypt.org/docs/staging-environment
https://letsencrypt.org/

20 |

Additional tested ACME Providers

• ACME is a standard supported by more providers

• New ACME provider can be added using their published directory URL

• ZeroSSL *)

− https://zerossl.com

− Requires registration + external account binding (EAB)

• BuyPass *)

− https://buypass.com

https://zerossl.com/
https://buypass.com/

21 |

On premise ACME CA

• SmallStep ACME CA

− https://smallstep.com/docs/tutorials/acme-challenge

• CA with ACME functionality

• Can also operate as “Sub-CA” for an existing corporate CA

• Good choice for internal customer deployments

• Another tested environment

• Directory URL configured depends on your deployment

• Setup on Docker in 10 minutes!

https://smallstep.com/docs/tutorials/acme-challenge

22 |

ACME DNS-01 Challenges

Background, Providers and Configuration

23 |

ACME DNS-01 Challenges & Wild Card Certificates

• Allows to request certificates without inbound internet connection

• ACME Challenge is stored in DNS TXT record

• Supports wild card certificates! e. g. *.acme.com

• Requires DNS provider API with outgoing HTTPS connection to DNS provider

− No inbound connection needed

− Can leverage outgoing proxy connections

• CertMgr server can request certificates for any server in the DNS domain

24 |

DNS Provider Interface

• Triggered by configured “registered domain”

− Choose the right provider

− Specify provider specific information

• Build-in support to integrate DNS providers

− Easy to integrate REST interface (@Formulas)

▫ Recommended interface!

▫ Works for most providers

▫ “Low code approach”

• Notes Agent

• Command-Line Integration

25 |

Available DNS TXT Integration

• REST API

− Cloudflare, Inc

− Digital Ocean, LLC

− Hetzner Online GmbH (Germany)

− ACME DNS

− Let's Encrypt Pebble test server

• Command-Line

− AWS Route 53 DNS

26 |

DNS Provider Interface – Import DXL

• DNS TXT API DXL files are not included in certstore.ntf

• Provider interfaces can be imported via DXL files

− Database action: Import DXL

• REST interface is based on @formulas

− Low code approach

− Can parse JSON responses

− Helper buttons for inserting fields & testing formulas

− Trace results useful for troubleshooting and development

27 |

HCL Github repository for CertMgr

• Available as of today

• Brand new git repository for DNS TXT provider integration

• Contains ready to import and use DXL files and scripts

• Intendent to build, share and collaborate DNS provider configurations

28 |

Building DNS TXT API

Interfaces

29 |

Low code approach with REST API and JSON

• Many DNS providers offer a REST base interface to manage DNS records

• Modern interfaces with JSON payloads

• CertMgr preferred integration option: HTTP request with @Formulas

• Technology used

− @Formulas

− HTTP/HTTPs requests (via Curl build into the servertask)

− JSON parsing results (native in the servertask) and make results available to @forumulas

• @Formulas for different steps of the operation including lookups

− Most flows should need to be that complicated flows

• Add/Delete operation for DNS TXT flows

30 |

DNS Provider Configuration

• Designed to be shared

• Code & documentation in one document

• DXL Export/Import to share

• Meta information for references, version author

31 |

Example: Digital Ocean

• Add and delete operation share the

same data in one result document

• Define HTTP request types, URL,

Header and Post data via @formula

• Use fields from configuration and

also parameters passed by CertMgr

• Results from JSON output can be

used in standard fields

• Status formula to check if request

was successful

▫ Uses HTTP status code syntax:

▫ 2xx = OK

32 |

Build-in Developer Support

• Insert configuration fields and parameters into formulas

• Test formulas with sample data

− Results can be copied and modified

• Should make it a lot easier to implement your own formulas

• Request Trace helps during implementation

33 |

Build-in Request Tracing

• Enabled either for all operations or just on error

• Shows all details about requests and results

• Documents are stored in certstore.nsf / DNS Trace Logs

• JSON fields and other results can be copied back into

formulas

34 |

TLS Credentials Cache

New cache for RSA and ECDSA TLS Credentials

Mapping keyfiles for Internet Sites

35 |

New TLS Cache

• *.kyr files have been managed by the KYR-Cache reading *.kyr files from disk

• New TLS Cache reads TLS Credentials directly from certstore.nsf

• TLS Cache sits in the SSL layer below internet protocols processes (e.g. HTTP/SMTP)

• Support for RSA and ECDSA keys in parallel

• Support for wildcard certificate lookups

• Automatic on the fly certificate reload

− when added or updated

• Also manages trusted roots & OCSP cache

36 |

Keyfile name field is still very important!

• The keyfile name in server document and internet site is

still triggering SSL

• Defines the default TLS Credential for the server

• Also used when server acts like a client (e.g. outgoing secure SMTP)

• Best practice:

− Specify Domino server's host name you have a certificate for

− Or specify keyfile.kyr in server document / internet site document

− Have “keyfile.kyr” in the default TLS Credentials document tagging an RSA

key as the default

− Not only for HTTP -- Important for SMTP, LDAP, POP3, IMAP

37 |

Demo Time

First Steps

Manual Flows

ACME Flows

Integrating with DNS TXT Providers

38 |

Known Limitations

Private Key Import and Export

39 |

TLS Credentials cannot be exported

• The private key of a TLS Credentials document is encrypted for security reasons

− Only CertMgr and “Servers with access:” can decrypt the key

• There is currently no option to export the private key

− A secure export is discussed for a future iteration

• Work-around

− For other Domains

▫ Copy server document into directory (or a DA directory) and encrypt for the server

▫ Add the server to “Servers with access:”

• Create the key outside and import the key to be used for manual or ACME flows

− As long as the key stays the same, the certificate can be merged with an existing key

40 |

Private keys cannot be imported via UI

• Most import operations would involve copy & paste or similar to transfer a private key

− By design today the only options to import private keys are available via server console

• Work around : Current import / migration options

− load certmgr -importkyr keyring.kyr

▫ Import one KeyRing file (*.kyr) to CertStore

− load certmgr -importkyr all

▫ Import all KeyRing files referenced from server doc & internet sites to CertStore

− load certmgr -importpem <file>

− Import file containing PEM encoded certificate chain and keys to CertStore

41 |

Troubleshooting

Settings, Logging, Debug Options

42 |

Global Settings

• Mainly used to set defaults for important settings

− For example: key type, key size, default ACME account and renewal interval

• Admin Server for CertMgr

− Should not be changed in global configuration document!

− Admin server is also stored in Directory profile “CertMgrServer” to publish in the domain

• Changing the admin server involves re-encryption of keys

• Migration via command-line option only!

− Load certmgr -MIGRATETOSERVER server-name

− Re-encrypts all private keys after checking all keys can be read

43 |

CertMgr Commands

• Tell certmgr process

− Skips the wait time between requests

• Tip to reduce the interval for testing

→ notes.ini CERTMGR_INTERVAL=2 (default: 30 seconds)

• Tell certmgr shutdown

− Waits until a running request is terminated and stops cleanly

− Recommended shutdown option

− Usually not a problem because of the small volume of operations during a day

44 |

Additional Notes.ini Parameter

• CertMgr_ReplicationInterval=n

− Default: 120 sec

− Used for client mode

• CertMgr_HealthCheckInterval=n

− Default 30 minutes

• CertMgr_CompactFreeSpace=n

− Default: 50%, Compacts database when specified percentage is free

• CertMgr_CompactDays=n

− Default: 30, Compacts database when not compacted since number of days

• CertMgr_ACCEPT_TOU=1

− Same as command-line option to confirm ACME provider terms of use – useful for automation

45 |

Common Issues & Tracing

• ACME license terms not accepted

• DSAPI Filter not configured

− Check server document / internet site

• Port 80 cannot be reached – DNS or Firewall issue

• Most errors are already visible in TLS Credentials document

− More detailed information can be found in debug logs if enabled

• DNS-TXT provider cannot be reached or configuration problem

− DNS provider trace should be set to error logging by default in provider config

46 |

Debugging and Troubleshooting Command Line

• -v = Verbose logging (log.nsf)

• -d = Debug mode

− IBM_TECHNICAL_SUPPORT/certmgr_debug_[..].log

• -l = Log all Curl I/O to file

− IBM_TECHNICAL_SUPPORT/certmgr_curl__[..].log

• -z = Connectivity test: Just get the ACME directory URLs and terminate

− Useful for testing internet connectivity

• Example: load certmgr -d -l

47 |

TLS Cache Logging and Debugging

• CERTSTORE_CACHELOG=1

− Recommended Starting point for all troubleshooting

− Logs most important events only

• CERTSTORE_CACHELOG=2

− Very detailed logging → Debug mode

• DEBUG_SSL_TLSCACHE=1 *)

− Debug SSL side of TLS Cache

• DEBUG_SSL_KYRCACHE=2 *)

• Debug SSL for old KYR Cache *) Task restart needed

48 |

DSAPI Debug Notes.ini Parameter

• DSAPI has no separate log file option

• Logging and debugging can be used to trace inbound challenge requests

• Notes.ini

− CERTMGR_DSAPIDEBUG=1

− CERTMGR_DSAPIVERBOSE=1

• Requires HTTP task restart (restart task http)

49 |

Hidden AllDocuments View

• Open via CTRL+Shift → View → Goto

• This view contains all documents by form

• CertMgr Server is listed for all documents encrypted

• Secondary sort column by NoteID and NoteUNID

− Find documents listed in low level error messages

50 |

HCL Domino CertMgr & certstore.nsf

Q&A

51 |

Building a Lab Environment

Domino on Docker with Let’s Encrypt Pebble

52 |

Build your own Lab Environment

• Challenging in internal lab environments

− HTTP-01 → Inbound Internet connections are difficult in internal test environments

− DNS-01 → Requires registered DNS domain and DNS TXT API integration

• Solution

− Docker based lab environment

− Very easy to setup via docker-compose

− Supports HTTP-01 & DNS-01 challenges

− Logging allows to trace and understand

− We are using it also for automation testing

53 |

Docker Desktop Lab Environment on Windows

• Very simple to setup and use environment

− Runs unmodified with default settings

− Components are reachable via 127.0.0.1

− Just switch to the right directory and run “docker-compose up”

54 |

Docker Server Lab Environment on Linux

• Docker is installed on a Linux host running in

VM (Hyper-V or Virtualbox)

• More complex

− No 127.0.0.1 addresses can be used

− Needs configuration changes to map the right IP addresses inside VM / Docker

− Networking on virtual machines can be complex and tricky

− Virtualbox has some network limitations! → https://www.virtualbox.org/manual/ch06.html

• Starting fresh consider Docker Desktop

− But if you have an existing environment

− you are already experienced with VMs

https://www.virtualbox.org/manual/ch06.html

55 |

Import Lab Configuration

• The lab configuration is prepared in a DXL file

• You can just import it into the database

− ACME Account

− DNS Provider Configuration

• The default will work for the Docker Desktop environment

• You need to change IP addresses matching the Docker IP address/hostname

56 |

Update IP Address in certstore.nsf

• The configuration is prepared for Docker Desktop

− In case of a Linux Docker scenario you have to update the

− IP address to reflect the correct address inside the VM

57 |

DNS Provider Account Customization

• The DNS provider account is the trigger for DNS-01 challenges

• The lab environment allows to work with any domain

• The registered domain is used as a trigger

− You can change the domain, because the challenge server

allows accepts all DNS TXT records for this Pebble Lab server

• You can create multiple documents pointing to the same

DNS provider configuration

58 |

Pebble Tips

• Import trusted root from Pebble server

− e.g curl -k https://127.0.0.1:15000/roots/0

• Pebble is designed for test and does not to store data permanently

− Docker container has no volume

− Root certificate and ACME account needs reset every time Pebble is restarted

• After restart you need to reset account

− Remove “ACME KID:”

− You will see error messages reminding you ;-)

$8.4 BILLION ENTERPRISE | 132,000 IDEAPRENEURS | 44 COUNTRIES

https://www.youtube.com/watch?v=JzfmzTcVUJg

